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The Brownian Semistationary Process

Definition
The one-dimensional Brownian semistationary process (BSS) is defined as:

Yt =

∫ t

−∞
g(t − s)σsdWs, (1)

where W is an Ft -adapted Brownian measure, σ is càdlàg and Ft -adapted,
g : R→ R is a deterministic function, continuous in R \ {0}, with g(t) = 0 if
t ≤ 0 and g ∈ L2((0,∞)). We also need to impose that∫ t
−∞ g2(t − s)σ2

s ds <∞ a.s. so that a.s. we have Yt <∞ for all t ≥ 0.

Andrea Granelli Limit theorems for the BSS process Imperial College London 3 / 25



Basic properties

1 For σ ≡ 1, the Gaussian core

Gt :=

∫ t

−∞
g(t − s)dWs,

is Gaussian, with mean 0 and variance
∫∞

0 g2(s)ds.
2 The process is second order stationary if σ is.
3 It does not have independent increments.
4 It is a typical assumption that g(x) ∼ xδ around 0. By

Kolmogorov-Centsov, then the process has a modification with α-Hölder
continuous sample paths, for all α ∈ (0, δ + 1

2 ).
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Semimartingale issues
Let us look again at the simple case where σ = 1:

Gt =

∫ t

−∞
g(t − s)dWs.

Then we can write a small increment as:

Gt+dt −Gt =

∫ t+dt

−∞
g(t + dt − s)dWs −

∫ t

−∞
g(t − s)dWs.

Adding and subtracting the same quantity:

Gt+dt −Gt =

∫ t+dt

−∞
(g(t + dt − s)− g(t − s)) dWs +

∫ t+dt

t
g(t − s)dWs.

Letting dt → 0, we (heuristically) get:

dGt =

∫ t

−∞
g′(t − s)dWs + g(0+)dWt .

We see that we have a problem if g′ /∈ L2(R), or g(0+) =∞.
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Why the BSS process?

1 The Brownian semistationary process has been used in the context of
turbulence modelling, as a model for the field of the velocity vectors in a
turbulent flow. Then g(x) ∼ x−

1
6 fits well with Kolmogorov’s scaling law.

2 In finance, the BSS process has successfully been used in the modelling
of energy prices.
Arbitrage?!

3 It is possible to ensure that no arbitrage holds even if non
semimartingales are used as price processes, provided that they satisfy
conditions that ensure existence of the so-called consistent price
systems: i.e. the existence of a semimartingale that evolves within the
bid-ask spread, for which there exists an equivalent martingale measure.
(Jouini and Kallal)
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Consistent Price System

Under arbitrarily small transaction costs, Guasoni, Rásonyi and
Schachermayer, showed that a price process Xt has a Conditional price
system if it has the so-called conditional full support property:

Supp (Law{Xu|t ≤ u ≤ T |Ft}) = CXt [t ;T ]

Fractional Brownian motion, which can be expressed as:

Xt =

∫ t

−∞
(f (s − t)− f (s)) dBs

has this property. (Cherny)
Pakkanen, finally, finds that our BSS process with stochastic volatility
possesses this property too.
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Quadratic variation
Let the increments of Y be denoted by ∆n

i Y := Y i
n
− Y i−1

n
. Outside the

semimartingale class, we do not have any guarantee that

[Y ]t := P− lim
n→∞

n∑
i=1

(∆n
i Y )

2

exists.
Indeed, take for example the fractional Brownian motion BH . Then one can
show that in L2:

n∑
i=1

(
∆n

i BH)2 → +∞ if H <
1
2

n∑
i=1

(
∆n

i BH)2 → 0 if H >
1
2
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Limit theorem setting

We want to study convergence of the realised variation process. We work in a
finite horizon [0,T ]. Fix a number n ∈ N and let ∆n

i Y := Y i
n
− Y i−1

n
. Consider

the process:

X (n)
t :=

bntc∑
i=1

(∆n
i Y )

2
,

or, more generally,

X (n)
t :=

bntc∑
i=1

∆n
i Y (1)∆n

i Y (2).

If we let n→∞, what kind of convergence can we get? In probability, in
distribution? Can we get a Donsker-type result? (Note that for each n, X (n)

has discontinuous paths. ).
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Convergence of processes

Definition (u.c.p. convergence)
The sequence of càdlàg processes X (n) is said to converge uniformly on
compacts in probability (u.c.p.) to X if, for all t ≤ T and all ε > 0:

lim
n→∞

P

(
sup

s∈[0,t]

∣∣∣X (n)
s − Xs

∣∣∣ > ε

)
= 0

Theorem

Suppose that, for all t in a dense subset D ⊂ [0,T ], X (n)
t

P→ Xt .
Assume further, that the paths of X (n) are increasing with time and the paths
of X are continuous, almost surely. Then, the (stronger) convergence

X (n)
·

u.c.p.→ X·

holds.
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Stable convergence

Definition
Let a probability space (Ω,F,P) be fixed. Suppose the sequence of variables
Y (n) converges weakly to Y , denoted:

Y (n) ⇒ Y .

We say that Y (n) converges stably to Y if, for any F−measurable set B, we
have:

lim
n→∞

P
(
{Y (n) ≤ x} ∩ B

)
= P ({Y ≤ x} ∩ B) ,

for a countable, dense set of points x .

Equivalently, if, for any f bounded Borel function, and for any F−measurable
fixed variable Z :

lim
n→∞

E
[
f
(

Y (n)
)

Z
]
= E [f (Y )Z ]

Equivalently, (Y (n),Z )⇒ (Y ,Z ).
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(Counter)example

Unlike convergence in distribution, stable convergence in distribution is a
property of the sequence of rv’s Y (n) rather than of the corresponding
sequence of distribution functions. Take X and X̃ be independent with a
common distribution. Set

Z (n) =

{
X if n is odd
X̃ if n is even

.

Obviously, Z (n) ⇒ X , but the convergence is not stable. Take for example
B = {X ≤ x}:

P
(
{Z (n) ≤ x} ∩ B

)
=

{
FX (x) if n is odd
F 2

X (x) if n is even

which cannot have a limit.
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Multivariate setting
Take W (1) and W̃ two independent Brownian measures and consider a
continuous stochastic process (ρt)t∈R defined on the whole real line.

Definition (Two-dimensional BSS without stochastic volatility)

Y (1)
t :=

∫ t

−∞
g(1)(t − s)σ(1)

s dW (1)
s

Y (2)
t :=

∫ t

−∞
g(2)(t − s)σ(2)

s ρs dW (1)
s +

∫ t

−∞
g(2)(t − s)σ(2)

s

√
1− ρ2

s dW̃s.

The vector process: (Yt)t∈R is defined to be a 2-dimensional correlated
Brownian semistationary process.

Assumption
ρ has continuous sample paths, is independent of W (1) and W̃ , and its paths
lie in the interval [−1,+1].
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Law of large numbers
The first result we want to prove is a law of large numbers for the realised
covariation.

1
n

∑bn·c
i=1 ∆

n
i Y (1)∆n

i Y (2)

c(∆n)

u.c.p.→
∫ ·

0
σ
(1)
s σ

(2)
s ρs ds,

for a certain scaling factor c(∆n). (∆n is short for 1
n ).

Assumption

We require that, for i ∈ {1,2}, the quantities:∫ x

0

(
g(i)(s)

)(
g(j)(s)

)
ds (2)∫ 1

0

(
g(i) (s + x)− g(i)(s)

)(
g(j) (s + x)− g(j)(s)

)
ds (3)

can be written as x2δ(i)+1L(i,j)(x), for x → 0+, for δ(i) ∈ (− 1
2 ,0) ∪ (0, 1

2 ), and
L(i,j) a slowly varying function.
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Ideas of proof
We consider the sigma algebra H := F ρ,σ(1),σ(2)

generated by the processes
ρ, σ(1), σ(2). We perform the splitting:∣∣∣∣∣1n

∑n
i=1 ∆

n
i Y (1)∆n

i Y (2)

c(∆n)
− 1

n

n∑
i=1

E

[
1

c(∆n)
∆n

i Y (1)∆n
i Y (2)

∣∣∣∣∣H
]∣∣∣∣∣+∣∣∣∣∣1n

n∑
i=1

E

[
1

c(∆n)
∆n

i Y (1)∆n
i Y (2)

∣∣∣∣∣H
]
−
∫ 1

0
σ
(1)
l σ

(2)
l ρl dl

∣∣∣∣∣ . (4)

If we compute:

E

[
∆n

i Y (1)∆n
i Y (2)

∣∣∣∣∣H
]
=

∫ ∞
0

ϕ
(1)
∆n
ϕ
(2)
∆n
σ
(1)
i∆n−sσ

(2)
i∆n−sρi∆n−s ds,

where

ϕ
(i)
∆n

(s) =

{
g(i)(s) s ≤ ∆n

g(i)(s)− g(i)(s −∆n) s > ∆n
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[
1

c(∆n)
∆n

i Y (1)∆n
i Y (2)

∣∣∣∣∣H
]
−
∫ 1

0
σ
(1)
l σ

(2)
l ρl dl

∣∣∣∣∣ . (4)

If we compute:

E

[
∆n

i Y (1)∆n
i Y (2)

∣∣∣∣∣H
]
=

∫ ∞
0

ϕ
(1)
∆n
ϕ
(2)
∆n
σ
(1)
i∆n−sσ

(2)
i∆n−sρi∆n−s ds,

where

ϕ
(i)
∆n

(s) =

{
g(i)(s) s ≤ ∆n

g(i)(s)− g(i)(s −∆n) s > ∆n
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∆n

i Y (1)∆n
i Y (2)

∣∣∣∣∣H
]
=
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0 ϕ

(1)
∆n

(s)ϕ(2)
∆n

(s) 1
n

(∑n
i=1 σ

(1)
i∆n−sσ

(2)
i∆n−sρi∆n−s

)
ds

c(∆n)
=∫

R+

1
n

(
n∑

i=1

σ
(1)
i∆n−sσ

(2)
i∆n−sρi∆n−s

)
dπn(s) (5)

dπn

ds
=
ϕ
(1)
∆n

(s)ϕ(2)
∆n

(s)
c(∆n)

So in order for πn to be a probability measure, we need to ask that

c(∆n) =

∫ ∞
0

ϕ
(1)
∆n

(s)ϕ(2)
∆n

(s)ds.

Now if πn ⇒ π, then we have the almost sure convergence:∫
R+

1
n

(
n∑

i=1

σ
(1)
i∆n−sσ

(2)
i∆n−sρi∆n−s

)
dπn(s)→

∫
R+

(∫ 1−s

−s
ρlσ

(1)
l σ

(2)
l dl

)
dπ(s).
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We have the limit: ∫
R+

(∫ 1−s

−s
ρlσ

(1)
l σ

(2)
l dl

)
dπ(s).

If we can show that actually: π = δ0, the limit becomes:∫ 1

0
ρlσ

(1)
l σ

(2)
l dl .

Theorem

If there exist β such that
(
(g(1)(x))′

)2
and

(
(g(2)(x))′

)2
are non increasing for

x > β, then:
πn ⇒ δ0

Example
For example, the Gamma kernel:

g(x) = xδe−λx

satisfies this condition for δ ∈ (− 1
2 ,0).
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Central Limit Theorem
Consider a bivariate Gaussian process:

Gt =

(
G(1)

t

G(2)
t

)
=

(∫ t
−∞ g(1)(t − s)dW (1)

s∫ t
−∞ g(2)(t − s)dW (2)

s

)

with dW (1)dW (2) = ρdt for a constant ρ. Let H be the Hilbert space generated
by the standard Gaussian random variables:(

∆n
j G(h)

τ
(h)
n

)
n≥1,1≤j≤bntc,h∈{1,2}

.

with the scalar product induced by their covariance.
We will assume the existence of an isometry B : H→ H between a separable
Hilbert space H and H, such that:

E [B(h1)B(h2)] = 〈h1,h2〉H.

B is called an isonormal Gaussian process.
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Tiny, tiny bits of Malliavin calculus

A fundamental result in Malliavin calculus is the Wiener-Itô chaos
decomposition:

L2(Ω) =
∞⊕

n=0

Hn,

where Hn is the linear space generated by the variables Hn (B(h)) and Hn is
the n-th Hermite polynomial. Hn is called the n-th Wiener chaos.
There exists an isometry:

Ip : H�p → Hp ⊂ L2(Ω)

between the symmetric tensor space H�p onto the p−th Wiener chaos Hp of
H ⊂ L2(Ω), called the multiple integral operator.
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We can write:

∆n
i G(1)

τ
(1)
n

∆n
i G(2)

τ
(2)
n

= I1

(
∆n

i G(1)

τ
(1)
n

)
I1

(
∆n

i G(2)

τ
(2)
n

)
,

from which:

∆n
i G(1)

τ
(1)
n

∆n
i G(2)

τ
(2)
n

= I2

(
∆n

i G(1)

τ
(1)
n

⊗̃
∆n

i G(2)

τ
(2)
n

)
+ E

[
∆n

i G(1)

τ
(1)
n

∆n
i G(2)

τ
(2)
n

]
.

where ⊗̃ represents the symmetrised tensor product.
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We can then write:

1√
n

bntc∑
i=1

(
∆n

i G(1)

τ
(1)
n

∆n
i G(2)

τ
(2)
n

− E

[
∆n

i G(1)

τ
(1)
n

∆n
i G(2)

τ
(2)
n

])

=
1√
n

bntc∑
i=1

I2

(
∆n

i G(1)

τ
(1)
n

⊗̃
∆n

i G(2)

τ
(2)
n

)
= I2

 1√
n

bntc∑
i=1

∆n
i G(1)

τ
(1)
n

⊗̃
∆n

i G(2)

τ
(2)
n

 (6)

As customary, to prove weak convergence, we need two ingredients:
1 Tightness
2 Convergence of the finite dimensional distributions.

I2(fk,n) = I2

 1√
n

bnbkc∑
i=bnakc+1

∆n
i G(1)

τ
(1)
n

⊗̃
∆n

i G(2)

τ
(2)
n
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Convergence within fixed Wiener chaos

Theorem

Let d ≥ 2 and qd , . . . ,q1 ≥ 1 be some fixed integers. Consider vectors:

Fn := (F1,n, . . . ,Fd,n) = (Iq1(f1,n), . . . , Iqd (fd,n)), n ≥ 1,

with fi,n ∈ H�qi . Let C ∈Md (R) be a symmetric, non-negative definite matrix,
and let N ∼ Nd (0,C). Assume that:

lim
n→∞

E [Fr ,nFs,n] = C(r , s), 1 ≤ r , s ≤ d . (7)

Then, as n→∞ the following two conditions are equivalent:
a) Fn converges in law to N.
b) For every 1 ≤ r ≤ d, Fr ,n converges in law to N (0,C(r , r)).
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The Fourth Moment Theorem

The Gaussian distribution is identified by its moments. That is,

X ∼ N(0,1) if and only if E [X n] =

{
0 if n is odd
n!! if n is even.

Theorem (Nualart and Peccati)

Let Fn = Iq(fn),n ≥ 1, be a sequence of random variables belonging to the
q-th chaos of X, for some fixed integer q ≥ 2 (so that fn ∈ H�q). Assume,
moreover, that E[F 2

n ]→ σ2 > 0 as n→∞. Then, as n→∞, the following
assertions are equivalent:

1 Fn
L→ N(0, σ2),

2 limn→∞ E[F 4
n ] = 3σ2,

3 ‖fn ⊗r fn‖H⊗(2q−2r) → 0, for all r = 1, . . . ,q − 1.
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Assumption
1 E

[
G(j)

s+tG
(i)
s

]
=
∫ +∞

0 g(i)(s)g(j)(s + t)ρi,j ds = tβ
(i)+β(j)−1L(i,j)

0 (t)

2 E
[(

G(i)
t+k −G(i)

k

)2
]
= t2β(i)−1L(i)

0 (t)⇒
√

R(i)(t)R(j)(t) = tβ
(i)+β(j)−1L̃0(t)

3 E
[(

G(i)
t+k −G(i)

k

)2
]′′

= tβ
(i)+β(j)−3L̃(i,j)

2 (t)

4 lim supx→0+ supy∈[x,xb]

∣∣∣∣ L(i,j)
2 (y)
L̃0(x)

∣∣∣∣ <∞
Theorem (Weak Convergence of the Gaussian Core)

 1√
n

bntc∑
i=1

(
∆n

i G(1)

τ
(1)
n

∆n
i G(2)

τ
(2)
n

− E

[
∆n

i G(1)

τ
(1)
n

∆n
i G(2)

τ
(2)
n

])
t∈[0,T ]

st.⇒
(√

βBt

)
t∈[0,T ]

,

where Bt is a Brownian motion independent of the processes G(1), G(2), β is
the limiting standard deviation and the convergence is in the Skorokhod space
D[0,T ] equipped with the Skorokhod topology.
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